He Wang

He Wang is an Associate Professor at University College London

  • HOME
  • Publications
  • Research
  • Funding
  • Group
  • About

Abstract

Video-based high-density crowd analysis and prediction has been a long-standing topic in computer vision. It is notoriously difficult due to, but not limited to, the lack of high-quality data and complex crowd dynamics. Consequently, it has been relatively under studied. In this paper, we propose a new approach that aims to learn from in-the-wild videos, often with low quality where it is difficult to track individuals or count heads. The key novelty is a new physics prior to model crowd dynamics. We model high-density crowds as active matter, a continumm with active particles subject to stochastic forces, named 'crowd material'. Our physics model is combined with neural networks, resulting in a neural stochastic differential equation system which can mimic the complex crowd dynamics. Due to the lack of similar research, we adapt a range of existing methods which are close to ours for comparison. Through exhaustive evaluation, we show our model outperforms existing methods in analyzing and forecasting extremely high-density crowds. Furthermore, since our model is a continuous-time physics model, it can be used for simulation and analysis, providing strong interpretability. This is categorically different from most deep learning methods, which are discrete-time models and black-boxes.

Resources

  1. Feixiang He, Jiangbei Yue, Jialin Zhu, Armin Seyfried, Dan Casas, Julien Pettre, He Wang.  Learning Extremely High Density Crowds as Active Matters.   The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2025 Conference
     Paper   Code   BibTex
    @inproceedings{he2025learning,
      author = {Feixiang He and Jiangbei Yue and Jialin Zhu and Armin Seyfried and Dan Casas and Julien Pettre and He Wang},
      title = {Learning Extremely High Density Crowds as Active Matters},
      booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      year = {2025}
    }

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 899739 CrowdDNA.

Copyright since 2016 He Wang